
YOUNG RESEARCHERS

UDC 004.652.4

© Safonov V.S.

Theoretical aspects of application of temporal relational DB
to store the social and economic information

This article deals with the theoretical aspects of temporal databases. There is one of the definitions

of temporal databases in the first part of the article which reflects the essence of temporal databases

exactly. The existing approaches to temporal databases are also described in the article as well as

three approaches to create such databases are highlighted. The article proposes a way to implement

temporal extension for existing relational databases. Therefore new data types and new operations

with them are proposed. All descriptions are given through the abstract data types. The final part of the

article deals with the application of temporal database to store the social and economic information

and creating of DB to keep the results of monitoring studies.

Relation database, temporal database, ADT, PostgreSQL, operation.

Vadim S.
SAFONOV
Junior scientific researcher of Institute of Socio-Economic Development

of Territories RAS

VadimSafonov@gmail.com

All information which we have to work with

has a temporal component in a varying degree.

The only difference is the following: a temporal

component can be stored in the information

system or it can’t be stored.

Several years ago the temporal component

was stored only in those systems where its

absence led to information distortion or inabil-

ity to restore proper sequence of events. Such

systems included financial databases, data stor-

age system for scientific experiments, i.e. all

the systems where time was an integral part of

information, such as the status of the research-

ing system or object at a certain time and the

time of financial transactions.

Such systems that accumulate historical

information are not widespread because the tasks

can be solved successfully without saving any time

in the majority of cases. In addition, these systems

are demanding to hardware resources such as

information carriers’ capacity primarily which

were actual recently. Therefore, even the systems

storing information with temporal attributes had

only those objects marked as temporal which lost

their properties without the temporal qualities.

For example, as for accounting systems, infor-

mation about financial transactions would have a

temporary marking while information about the

person who committed the operation would be

stored only in its current state.

134 2 (14) 2011 Economical and social changes: facts, trends, forecast

Interest in systems that store time reference

information has increased recently. Such sys-

tems are called temporal. Temporal databases

are the databases which store data related to

the time and have controlling means of such

information.

The main difference between temporal

database management systems (DBMS) and

the conventional relational database systems

is the following: any object that is created at

time t1 and is removed at time t2 retains all of

its state in this time interval [t1, t2], whereas

there is only current state of an object at the

particular time in the conventional DBMS.

Thus, the temporal database stores the his-

tory of changes of object states and the user can

obtain information about the status of records

in the database at any time of the specified

period.

There are several approaches to implement

the temporal properties of DBMS at present.

The first approach is the creation of temporal

DBMS from scratch. In this case all temporal

properties will be founded in the core of data-

base management system.

Although such developments exist, but we

can’t talk about their mass using because non-

temporal relational DBMS dominate in the

up-to-date market and existing temporal

databases are inferior to them in functionality.

There are also works that invite you to query

temporal databases in natural language, but

such approach is not promising because lexical

analyzers are not perfect and they can recognize

only a limited number of lexical structures.

Whereas a natural language query can be for-

mulated in different ways.

The third approach is the most rational.

It is an extension of the existing DBMS func-

tionality through the creation of some addi-

tional functional block which is responsible

for transformation of temporal queries into

the relational form and transformation

of data from the storage format into the

structure that is convenient to the user. The

location of this functional block is the main

problem in such approach.

There are three main options: the DBMS’s

core, the user’s application and the form of an

intermediate module.

The first way is bad because it is available

only to developers of DBMS, but it provides

maximum data transparency in applications

and great potential for optimizing of queries.

The second way is more available to devel-

opers of applications. Temporal properties are

available for your application without reference

to the chosen DBMS. At the same time such

properties can be laid only in the newer ver-

sions of programs. Currently this method is

used more often.

The third approach creates the transparent

extension both for front end and back-end. But

you can easily see that the intensity of data

exchange between the module and the appli-

cation is less than between the module and

DBMS. That’s why it is reasonable to place this

intermediate module as close to the DBMS’s

core as possible.

In our opinion it is more rational to com-

bine the first and the third approaches. It is

reasonable to introduce a part of the module

into the DBMS’s core and use the middleware.

In this case you can get support for temporary

data integrity at the level of DBMS, and it is

possible to transform the queries in the inde-

pendent module.

Thus, it is necessary to use two additional

fields in the temporal tables as opposed to the

conventional relational tables to store the

beginning-of-period and end-of-period time-

stamps. In this case it is necessary to use com-

posite primary keys, i.e. you have to unite the

tables in three or more fields. In our opinion,

it is more rational to define a new composite

data type that contains a unique identifier and

two timestamps. A new temporal data type for

working with the urgency time can be described

as an abstract data type (ADT) [2] in the fol-

lowing way:

135Economical and social changes: facts, trends, forecast 2 (14) 2011

 V.S. Safonov YOUNG RESEARCHERS

There are the following operations for this

type. IS_OPEN – it allows to determine

whether the period is open, IS_LINKED –

determines the presence of pointers to the

column from other tables, CONS – a construc-

tor of the type, CLOSE – it closes the open

period, IS_INTERSECT – it checks whether

the actual periods of the same object intersect,

GET_KEY – it gets the numeric part of the

type.

 It should be noted that the possibility of

defining of the new types is laid in the current

version of SQL standard, and if you use ADT

to describe a new type it allows you to imple-

ment a new data type to any modern relational

database management system that supports the

addition of the new types.

We used PostgreSQL database version

8.2 [3] as an experiment in the current

work. This system was chosen for several

reasons.

 First of all, it has free and open source code.

Secondly, functional capabilities of the system

are wide.

Thirdly, there are detailed documents here.

The implementation is regarded in this article

later in respect to this DBMS.

New data type for PostgreSQL database was

defined as the following:

CREATE TYPE validtime (

INPUT = valid_time_in,

OUTPUT = valid_time_out,

internallength = 24,

alignment = double

);

In this example, the function valid_time_

in() converts the data which are sent to its

entrance into the internal structure of the fol-

lowing form:

valid_time_in ()

typedef struct ValidTime {

int ValidBegin;

int ValidEnd;

int key;

}

This structure stores the information about

beginning-of-period timestamp and end-of-

period timestamp, as well as the unique identifier;

a combination of these three values provides the

uniqueness of each tuple. A function valid_time_

out () performs the reverse action. These func-

tions have been implemented in the language C.

DATA_TYPE ValidTimeKey IS

OPERATIONS:

CONS: → ValidTimeKey(Key, Time_Begin, Time_End=NULL)

CLOSE: ValidTimeKey(Key,Time_Begin,NULL) →

ValidTimeKey(Key,Time_Begin, Time_End)

IS_OPEN: ValidTimeKey → bool

IS_LINKED: ValidTimeKey → bool

IS_INTERSECT: ValidTimeKey → bool

LESS_THAN: ValidTimeKey < ValidTimeKey → bool

LESS_THAN_EQ: ValidTimeKey <= ValidTimeKey → bool

LESS_EQ: ValidTimeKey == ValidTimeKey → bool

GREATER_THEN_EQ: ValidTimeKey >= ValidTimeKey → bool

GREATER_THEN: ValidTimeKey > ValidTimeKey → bool

GET_KEY: ValidTimeKey (Key,Time_Begin, Time_End) → Key

END ValidTimeKey

136 2 (14) 2011 Economical and social changes: facts, trends, forecast

Theoretical aspects of application of temporal relational DB to store the social and economic information

The type is represented for the user of data-

base as a string of the following form:

(key, validbegin, validend)

type is:

(Key, validbegin, validend)

where the key – a unique numeric identifier,

validbegin and validend – beginning-of-

period and end-of-period timestamps.

Element key must be an integer. A time-

stamp in the format Unix Timestamp date in

YYYY-MM-DD or YYYY-MM-DD HH:

MM: SS can be specified as the timestamps.

The function valid_time_in () converts auto-

matically the indicated dates into the time-

stamp. All dates are stored as the timestamps

regardless of format specified by the user.

The developing type should be able to be

used as a key because one of the objectives

pursued by the creation of a new type is flight

from composite primary keys. Thereto it was

necessary to determine the class of operators

in respect to PostgreSQL database which were

responsible for the construction of the index

tree. B-tree was used as the index.

Five operators were identified to create the

B-tree: less, less or equal, equal, more or equal

and more. Each operator was implemented as

a function of the C language that compared

two values of the new type and returned value

of the type of Boolean. Here is an example of

implementation of the operator “less” into the

database.

CREATE OPERATOR < (

leftarg = validtime, rightarg = validtime,

procedure = valid_time_less_than,

commutator = > , negator = >= ,

restrict = scalarltsel, join = scalarltjoinsel

);

Then we defined an operational class using

those operators. It allowed using a new type in

the primary key.

CREATE OPERATOR CLASS valid_

time_abs_ops

DEFAULT FOR TYPE validtime

USING btree AS

OPERATOR 1 < ,

OPERATOR 2 <= ,

OPERATOR 3 = ,

OPERATOR 4 >= ,

OPERATOR 5 > ,

FUNCTION 1 valid_time_abs_

cmp(validtime, validtime);

The steps described above allowed to use

not a group of three fields but one field of a new

type as the primary keys and simplify writing

queries. However, creation of a new type

does not convert the relational database into

the temporal database; it is only the first step

towards such a transformation. In addition,

it is necessary to transform queries from the

temporal form into the format specified SQL

standard. It is reasonable to perform all these

transformations in some intermediate module.

And queries to the temporal database that uses

the new types of data should not differ from

queries in the classical language for the users.

Simple queries to the temporal databases should

not vary from queries to the conventional

relational database. In other words, the query

SELECT * FROM table1; in both cases must

return the same result (as applied to the tempo-

ral databases – all current at the time of writing).

Let’s consider the task of forming a com-

mon database of public opinion polls. In spite

of the fact that it is more correct to refer such

data to the information contained in the time

series rather than to temporal information,

temporal attributes would be useful for some

aspects of these databases because questions

and answers may change with the lapse of time.

It should be taken notice of the fact that some

parts of the forms are identical although the

polls may pursue different goals or they can

be focused on different population groups (for

example, groups which differ in their places of

residence or social status, etc.). Such data com-

137Economical and social changes: facts, trends, forecast 2 (14) 2011

 V.S. Safonov YOUNG RESEARCHERS

The proposed structure of the temporal DBMS

bined into a single database will expand greatly

the background information for analysis.

Thus, the creation of a single normalized

relational database is an important task, and

the addition of temporal attributes in those

tables, where it is necessary, will expand its

capabilities.

The results of all periods of measurements

are generated in the form of files of SPSS pro-

gram. They represent a table where each row

stores the data of one survey. It is difficult to

combine the data of polls carrying out in differ-

ent time, although this type of representation

is useful for the analysis of individual results.

Although the polls are not temporary data,

but logic circuit shows that some tables may be

added by the time aspect: for example, a group

of tables that describe the place of filling in

of the questionnaire. In spite of the fact that

administrative and territorial division is con-

stant, it is necessary to take into account the

recent trend to merger of administrative and

territorial areas when we develop the database.

It would be difficult to maintain the integrity

of the data without introducing a temporary

component to them.

In addition, the temporal aspect is required

in the tables which contain questions and their

answers because they can change in the course

of time. The keys for all tables which are pro-

posed to be converted into the temporal form

are simple in the scheme of the database and

they represent a unique identifier that satisfies

the normal forms and ensures the tuple’s unre-

138 2 (14) 2011 Economical and social changes: facts, trends, forecast

Theoretical aspects of application of temporal relational DB to store the social and economic information

peatability. It is impossible to use the simple

primary keys for these tables when the database

is converted into a temporal form because it

can’t ensure uniqueness of records. So it is

necessary to use compound primary keys of the

following type: [record identifier, the beginning

of the urgency period and the end of it]. And

then the database schema will have the follow-

ing form (figure).

This scheme can easily be represented in

the non-temporal form; it is just enough to

remove the fields which are responsible for the

time component, therefore it isn’t given in this

article. Although the transformation into the

temporal form expands the database’s oppor-

tunities, but it can complicate the queries. But

in this case the information for the temporal

database will be more detailed and reliable. So,

if we change the answers to any closed question

(for example, add a new answer) in the non-

temporal database, the changes will affect all

existing data. If we turn to the temporal data-

base, the temporal fields which are added can

solve this problem: they point out the period

when one or another variant of the answer exists

although the query itself does not change.

Thus, we can draw some conclusions.

Firstly, the definition of relevant periods for all

elements of the questionnaire can remove

ambiguity in question formulations, question-

naire venues, etc. Secondly, addition of the

extra information to the database can extend

the analysis allowing to retrieve and analyze

data in dynamics. Thirdly, it is easier to link

the temporal database to events which are not

directly reflected in it, but which are connected

with specific time intervals.

In general we can say that nowadays the

temporal databases are the promising area of

researches. And, in our opinion, the creation

of special extensions of temporal data manage-

ment for existing DBMS is the most optimal.

References
1. Snodgrass, R.T. Developing time-oriented database application in SQL / R.T. Snodgrass. – San Francisco:

Morgan Kaufmann Publishers, 2000. – 528 p.

2. Futi, К. Programming languages and VLSI circuit design: trans. with Japanese. / K. Futi, N. Suzuki. –

Moscow: World, 1988. – 224 p.

3. PostgreSQL 8.2.0 Documentation [Electronic resource] // PostgreSQL. – Available at: http://www.postgresql.

org/files/ documentation/pdf/8.2/ postgresql-8.2-A4.pdf

4. Education. Science. Business: Features of regional development and integration: collected papers of All-

Russian scientific and practical conference. – Cherepovets: IMIT SPSTU, 2005. –344 p.

5. Poray, D.S. Implementation of the temporal database concept through the relational database means [Elec-

tronic resource] / D.S. Poray, A. V. Solovyov, G.V. Korolkov. – Available at: ftp://ftp.dol.ru/pub/users/cgntv/down-

load/sbornic/sbornic5/Doc8.doc

139Economical and social changes: facts, trends, forecast 2 (14) 2011

 V.S. Safonov YOUNG RESEARCHERS

